Machine Learning & Bayes - Synergies and Challenges -

Martin Trapp Aalto University

Learn Bayes Spring 2025 @ Karolinska Institutet

Outline

Success of Modern Machine Learning

Generative tasks

Predictive tasks

Image Generation

Protein Prediction ^[1]

"Reasoning" tasks

Chain-of-Thought in LLMs ^[2]

Machine Learning in Healthcare

Reminder on (modern) ML

... an incomplete and inaccurate picture of machine learning...

• The central objects in deep learning (modern ML) are artificial neural networks or neural network architectures (NNs).

6

• The central objects in deep learning (modern ML) are artificial neural networks or neural network architectures (NNs).

• The central objects in deep learning (modern ML) are artificial neural networks or neural network architectures (NNs).

- The central objects in deep learning (modern ML) are artificial neural networks or neural network architectures (NNs).
- NNs exploit function composition to define flexible non-linear function approximators with simple local operations.

$$f(\boldsymbol{x}) = f^{(L)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\boldsymbol{x})$$

- The central objects in deep learning (modern ML) are artificial neural networks or neural network architectures (NNs).
- NNs exploit function composition to define flexible non-linear function approximators with simple local operations.

$$f(\boldsymbol{x}) = f^{(L)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\boldsymbol{x})$$

• The network weights (parameters) are learned through backpropagation (chain rule) for a given loss function.

O PyTorch

In practice, modern NNs are complex systems:

Schematics of the Stable Diffusion 3.5 Model for Image Generation

https://huggingface.co/stabilityai/stable-diffusion-3.5-large

Machine Learning in Healthcare

Machine Learning in Healthcare

Many Applications are High-risk!

The Real World is Messy

ICCV 2023 Tutorial on The Many Faces of Reliability of Deep Learning for Real-World Deployment

Distribution Shifts

Various Sources of Noise

Koh, P W. et al. (2021) WILDS: A Benchmark of in-the-Wild Distribution Shifts. In *ICML*.

Sabour, S. et al. (2021) SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting. In *ICML*.

Out-of-domain data (Tesla)

Hallucinations (OpenAI Whisper)

N BIZ&IT CARS CULTURE GAMING HEALTH POLICY SCIENCE SECURITY SPACE TECH FORUM

TUNRELIABLE NARRATOR

Hospitals adopt errorprone AI transcription tools despite warnings

OpenAI's Whisper tool may add fake text to medical transcripts, investigation finds.

BENJ EDWARDS - 28 OCT 2024 20:23 | 🗩 169

-> Credit: Kobus Louw via Getty Images

Expectations for ML Systems

Systems and models should be safe, trustworthy and reliable.

For this, we require that they are: *(incomplete list)*

- Accurate in their predictions
- Robust to input perturbations (noise, adversarial attacks)
- "Know when they don't know" (recognise out-of-domain data)
- Act if they are uncertain (*e.g.*, active learning, reasoning)

However, ...

- Accurate in their predictions
- Sensitive to pertubations^[1]
- Don't know when they don't know^[2]
- Overconfident in their predictions^[3]

Considered "unreliable"

Szegedy, C. et al. (2014). Intriguing properties of neural networks. In *ICLR*.
Nalisnick, E. et al. (2019). Do deep generative models know what they don't know? In *ICLR*.
Guo, C. et al. (2017). On calibration of modern neural networks. In *ICML*.

Bayes for Machine Learning

Functional Priors

Meronen, L. et al. (2021). Periodic activation functions induce stationarity. In *NeurIPS*.

Functional Priors

Uncertainty Quant. & Overconfidence

Meronen, L. et al. (2021). Periodic activation functions induce stationarity. In *NeurIPS*.

Kristiadi, A. et al. (2020). Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks. In *ICML*.

Functional Priors

Uncertainty Quant. & Overconfidence

Active Learning

Meronen, L. et al. (2021). Periodic activation functions induce stationarity. In *NeurIPS*.

Kristiadi, A. et al. (2020). Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks. In *ICML*.

Baumann, A. et al. (2025). Post-hoc Probabilistic Vision-Language Models. ArXiv.

Functional Priors

Uncertainty Quant. & Overconfidence

Active Learning

Meronen, L. et al. (2021). Periodic activation functions induce stationarity. In NeurIPS.

Baumann, A. et al. (2025). Post-hoc Probabilistic Vision-Language Models. ArXiv.

Uncertainty Quantification in ML

Uncertainty Quantification in ML

Uncertainty Quantification in ML

https://torch-uncertainty.github.io/

https://aleximmer.com/Laplace/

https://github.com/AaltoML/SUQ

(Deterministic) Neural Network

Bayesian Neural Network

(Deterministic) Neural Network

Bayesian Neural Network

Computations in Bayesian Learning are notoriously hard! *in general.

Challenges in Bayesian Deep Learning:

- Hard to specify functional priors.
- Intractable high-dimensional multi-modal posterior. (billions of parameters)
- Models can be difficult to train from scratch. (high compute resource demand)

Computations in Bayesian Learning are notoriously hard! *in general.

Challenges in Bayesian Deep Learning:

- Hard to specify functional priors.
- Intractable high-dimensional multi-modal posterior. (billions of parameters)
- Models can be difficult to train from scratch. (high compute resource demand)

Inference Methods in BDL

Inference Methods in BDL

Variational Inference: Big Picture

Recipe for approximating an intractable distribution $p \in \mathcal{P}$

1. Define a tractable family of distributions Q

Variational Inference: Big Picture

Recipe for approximating an intractable distribution $p \in \mathcal{P}$

- 1. Define a tractable family of distributions Q
- 2. Define a way to compute a "distance" between distributions

 $\mathrm{D}\left(p||\mathbf{q_1}\right) > \mathrm{D}\left(p||\mathbf{q_2}\right)$

Variational Inference: Big Picture

Recipe for approximating an intractable distribution $p \in \mathcal{P}$

- 1. Define a tractable family of distributions Q
- 2. Define a way to compute a "distance" between distributions $\mathbf{D}(\mathbf{u} \mid \mathbf{v}) = \mathbf{D}(\mathbf{u} \mid \mathbf{v})$

$$D\left(p||\boldsymbol{q}_{1}\right) > D\left(p||\boldsymbol{q}_{2}\right)$$

3. Search for best approximation

$$q^{\star} = \underset{q \in \mathcal{Q}}{\operatorname{arg\,min}\,\mathcal{D}}\left(p||q\right)$$

Reminder on KL divergence

Let P and Q be two probability distributions with p.d.f. denoted as p and q, respectively.

Then their Kullback–Leibler divergence is given as:

$$D_{\mathrm{KL}}\left(P||Q\right) = \int_{x} p(x) \log\left(\frac{p(x)}{q(x)}\right) \mathrm{d}x$$

Reminder on KL divergence

Let P and Q be two probability distributions with p.d.f. denoted as p and q, respectively.

Then their Kullback–Leibler divergence is given as:

$$D_{KL}(P||Q) = \int_{x} p(x) \log\left(\frac{p(x)}{q(x)}\right) dx$$

 $\mathcal{D}_{\mathrm{KL}}\left(P||Q\right) \geq 0 \qquad \text{ and } \qquad \mathcal{D}_{\mathrm{KL}}\left(P||Q\right) = 0 \iff P = Q$

Reverse KL $D_{\mathrm{KL}}\left(q(\theta) || p(\theta \mid \boldsymbol{x}_{1:n})\right) = \mathbb{E}_{\theta \sim q}\left[\log\left(\frac{q(\theta)}{p(\theta \mid \boldsymbol{x}_{1:n})}\right)\right]$

$$D_{\mathrm{KL}}(q(\theta)||p(\theta \mid \boldsymbol{x}_{1:n})) = \mathbb{E}_{\theta \sim q} \left[\log \left(\frac{q(\theta)}{p(\theta \mid \boldsymbol{x}_{1:n})} \right) \right]$$
$$= \mathbb{E}_{\theta \sim q} \left[\log \left(\frac{q(\theta)}{\frac{p(\boldsymbol{x}_{1:n} \mid \theta) p(\theta)}{p(\boldsymbol{x}_{1:n})}} \right) \right]$$

$$D_{\mathrm{KL}}(q(\theta)||p(\theta \mid \boldsymbol{x}_{1:n})) = \mathbb{E}_{\theta \sim q} \left[\log \left(\frac{q(\theta)}{p(\theta \mid \boldsymbol{x}_{1:n})} \right) \right]$$
$$= \mathbb{E}_{\theta \sim q} \left[\log \left(\frac{q(\theta)}{\frac{p(\boldsymbol{x}_{1:n} \mid \theta) p(\theta)}{p(\boldsymbol{x}_{1:n})}} \right) \right]$$
$$= \mathbb{E}_{\theta \sim q} \left[\log \left(\frac{q(\theta)}{p(\theta)} \right) + \log \left(\frac{p(\boldsymbol{x}_{1:n})}{p(\boldsymbol{x}_{1:n} \mid \theta)} \right) \right]$$

$$\begin{aligned} \mathbf{D}_{\mathrm{KL}}\left(q(\theta)||p(\theta \mid \boldsymbol{x}_{1:n})\right) &= \mathbb{E}_{\theta \sim q} \left[\log\left(\frac{q(\theta)}{p(\theta \mid \boldsymbol{x}_{1:n})}\right)\right] \\ &= \mathbb{E}_{\theta \sim q} \left[\log\left(\frac{q(\theta)}{\frac{p(\boldsymbol{x}_{1:n}\mid\theta) p(\theta)}{p(\boldsymbol{x}_{1:n})}}\right)\right] \\ &= \mathbb{E}_{\theta \sim q} \left[\log\left(\frac{q(\theta)}{p(\theta)}\right) + \log\left(\frac{p(\boldsymbol{x}_{1:n})}{p(\boldsymbol{x}_{1:n}\mid\theta)}\right)\right] \\ &= \mathbf{D}_{\mathrm{KL}}\left(q(\theta)||p(\theta)\right) - \mathbb{E}_{\theta \sim q} \left[\log p(\boldsymbol{x}_{1:n}\mid\theta)\right] + \log p(\boldsymbol{x}_{1:n}) \end{aligned}$$

$$D_{\mathrm{KL}}\left(q(\theta) || p(\theta \mid \boldsymbol{x}_{1:n})\right) = \mathbb{E}_{\theta \sim q}\left[\log\left(\frac{q(\theta)}{p(\theta \mid \boldsymbol{x}_{1:n})}\right)\right]$$

•

 $= \mathrm{D}_{\mathrm{KL}} \left(q(\theta) || p(\theta) \right) - \mathbb{E}_{\theta \sim q} \left[\log p(\boldsymbol{x}_{1:n} \mid \theta) \right] + \log p(\boldsymbol{x}_{1:n})$

$$D_{\mathrm{KL}}\left(q(\theta) || p(\theta \mid \boldsymbol{x}_{1:n})\right) = \mathbb{E}_{\theta \sim q}\left[\log\left(\frac{q(\theta)}{p(\theta \mid \boldsymbol{x}_{1:n})}\right)\right]$$

•

 $= \mathrm{D}_{\mathrm{KL}} \left(q(\theta) || p(\theta) \right) - \mathbb{E}_{\theta \sim q} \left[\log p(\boldsymbol{x}_{1:n} \mid \theta) \right] + \log p(\boldsymbol{x}_{1:n})$

 $\log p(\boldsymbol{x}_{1:n}) = -\mathrm{D}_{\mathrm{KL}} \left(q(\theta) || p(\theta) \right) + \mathbb{E}_{\theta \sim q} \left[\log p(\boldsymbol{x}_{1:n} \mid \theta) \right] + \underbrace{\mathrm{D}_{\mathrm{KL}} \left(q(\theta) || p(\theta \mid \boldsymbol{x}_{1:n}) \right)}_{>0}$

$$D_{\mathrm{KL}}\left(q(\theta) || p(\theta \mid \boldsymbol{x}_{1:n})\right) = \mathbb{E}_{\theta \sim q}\left[\log\left(\frac{q(\theta)}{p(\theta \mid \boldsymbol{x}_{1:n})}\right)\right]$$

 $= \mathrm{D}_{\mathrm{KL}} \left(q(\theta) || p(\theta) \right) - \mathbb{E}_{\theta \sim q} \left[\log p(\boldsymbol{x}_{1:n} \mid \theta) \right] + \log p(\boldsymbol{x}_{1:n})$

 $\log p(\boldsymbol{x}_{1:n}) = -\mathrm{D}_{\mathrm{KL}} \left(q(\theta) || p(\theta) \right) + \mathbb{E}_{\theta \sim q} \left[\log p(\boldsymbol{x}_{1:n} \mid \theta) \right] + \underbrace{\mathrm{D}_{\mathrm{KL}} \left(q(\theta) || p(\theta \mid \boldsymbol{x}_{1:n}) \right)}_{\geq 0}$

 $\geq -D_{\mathrm{KL}}\left(q(\theta)||p(\theta)\right) + \mathbb{E}_{\theta \sim q}\left[\log p(\boldsymbol{x}_{1:n} \mid \theta)\right] = \mathrm{ELBO} \text{ (Evidence Lower Bound)}$

https://lacerbi.github.io/blog/2024/vi-is-inference-is-optimization/

Variational Inference: Takeaways

- VI turns inference into an optimisation problem.
- Can scale to large data sets, but is challenging to optimise
- Can exhibit high variance in stochastic gradients
- Tendency to underestimate the variance if reverse KL is used
- Recent work has shown that VI can be effective for large-scale models.

What if training a model "from scratch" is too expensive?

What if training a model "from scratch" is too expensive?

$$\underbrace{\log p(\theta) + \log p(\boldsymbol{x} \mid \theta)}_{\ell(\theta)} \approx \ell(\theta^*) + J_{\ell|_{\theta=\theta^*}}(\theta - \theta^*) - \frac{1}{2}H_{\ell|_{\theta=\theta^*}}(\theta - \theta^*)^2$$

$$\underbrace{\log p(\theta) + \log p(\boldsymbol{x} \mid \theta)}_{\ell(\theta)} \approx \ell(\theta^*) + J_{\ell|_{\theta=\theta^*}}(\theta - \theta^*) - \frac{1}{2}H_{\ell|_{\theta=\theta^*}}(\theta - \theta^*)^2$$

$$= \ell(\theta^*) - \frac{1}{2} \boldsymbol{H}_{\ell|_{\theta=\theta^*}} (\theta - \theta^*)^2$$

$$\propto \log \mathcal{N}(\theta^*, \boldsymbol{H}_{\ell|_{\theta=\theta^*}}^{-1})$$

Daxberger, E. et al. (2021) Laplace Redux - Effortless Bayesian Deep Learning. In *NeurIPS*. Roy, S. et al. (2022). Uncertainty-guided Source-free Domain Adaptation. In *ECCV*.

Linearised Laplace: Problem Setting

Antoran, J. (2024). Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks. PhD thesis.

Linearised Laplace: Problem Setting

Antoran, J. (2024). Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks. PhD thesis.

Linearised Laplace

The linearised Laplace approximates the predictive distribution:

$$f(x;\theta) \approx f(x;\theta_{\mathrm{MAP}}) + \nabla f(x;\theta) \mid_{\theta_{\mathrm{MAP}}}^{\top} (\theta - \theta_{\mathrm{MAP}}) = \hat{f}(x;\theta)$$

Linearised Laplace

The linearised Laplace approximates the predictive distribution:

$$f(x;\theta) \approx f(x;\theta_{\mathrm{MAP}}) + \nabla f(x;\theta) \mid_{\theta_{\mathrm{MAP}}}^{\top} (\theta - \theta_{\mathrm{MAP}}) = \hat{f}(x;\theta)$$

$$p(y^{\star} \mid x^{\star}, \boldsymbol{x}, \boldsymbol{y}) \approx \int \mathcal{N}(y^{\star} \mid \hat{f}(\boldsymbol{x}; \boldsymbol{\theta}), \sigma) \mathcal{N}(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{\mathrm{MAP}}, \Sigma) \mathrm{d}\boldsymbol{\theta}$$

Laplace Approximation: Takeaways

- Does not require retraining (post-hoc).
- Requires linearisation in the case of deep learning models.
- Crude and only local approximation.
- Estimation of the Hessian can be difficult.

• Crude but useful (easy to use) "tool" for Bayesian inference in deep learning.

Machine Learning for Bayes

Amortized Inference

- NNs are powerful function approximators and generators (e.g., diffusion models)
- How can we use NNs for approximate Bayesian inference?
- \rightarrow Emerging research on amortized inference with NNs (condition and predict)

(a) Prior v samples

(b) PriorGuide v samples

(c) PriorGuide v retrained

Chang, P. et al. (2025). Inference-Time Prior Adaptation in Simulation-Based Inference via Guided Diffusion Models. ICLR workshop.

Recap

- Deep learning methods can be problematic in high-risk domains.
- The Bayesian approach to deep learning can help reduce overconfidence, quantify uncertainties, and utilise uncertainties in decision-making.
- Prior specification is challenging and an open question.
- Performing computations is challenging, but promising avenues exist.
- Machine learning can help scaling Bayesian inference, e.g., through amortisation.

Thanks for your attention!

