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Machine Learning for Bayes

Introduction



Success of Modern Machine Learning

Generative tasks Predictive tasks

Image Generation

2: Wei, J., et al. (2022). Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS.

Protein Prediction [

1: Jumper, J., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature.

“Reasoning”’ tasks

Chain-of-Thought Prompting

~

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5+ 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

N _J

st ~

A: The cafeteria had 23 apples originally. They used

kanswer is9. )

Chain-of-Thought
in LLMs [2




Machine Learning in Healthcare

LU

Personalised Drug discovery ML-supported ML-assisted Automated image
treatment and development diagnosis surgery analysis



Reminder on (modern) ML

... an incomplete and inaccurate picture of machine learning...



Reminder on Deep Learning

* The central objects in deep learning (modern ML) are artificial
neural networks or neural network architectures (NNs).
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Reminder on Deep Learning

* The central objects in deep learning (modern ML) are artificial
neural networks or neural network architectures (NNs).

Activation Function, e.g., ReLU(x) = max(0,z)
w11
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Reminder on Deep Learning

* The central objects in deep learning (modern ML) are artificial
neural networks or neural network architectures (NNs).

=0 (wl,lagm + wl,gag)> + ...+ wl,naglm + bgo))

i=1
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Reminder on Deep Learning

* The central objects in deep learning (modern ML) are artificial
neural networks or neural network architectures (NNs).

* NNs exploit function composition to detine flexible non-linear
function approximators with simple local operations.

f(x) = f(L) o -0 f(2) o f(l)(a:)



Reminder on Deep Learning

* The central objects in deep learning (modern ML) are artificial
neural networks or neural network architectures (NNs).

* NNs exploit function composition to detine flexible non-linear
function approximators with simple local operations.

f(x) = f(L) o -0 f(2) o f(l)(w)

* The network weights (parameters) are learned through
backpropagation (chain rule) for a given loss function.

O PyTorch
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Reminder on Deep Learning

In practice, modern NNs are complex systems:

o
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(a) Overview of all components. (b) One MM-DiT block

Schematics of the Stable Diffusion 3.5 Model for Image Generation
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https://huggingface.co/stabilityai/stable-diffusion-3.5-large



Machine Learning in Healthcare

LU

Personalised Drug discovery ML-supported ML-assisted Automated image
treatment and development diagnosis surgery analysis

12



Machine Learning in Healthcare

Many Applications are High-risk!

Personalised Drug discovery ML-supported ML-assisted Automated image
treatment and development diagnosis surgery analysis
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The eal World is Messy

N iad

ICCV 2023 Tutorial on The Many Faces of Reliability of Deep Learning for Real-World Deployment




A World of Uncertainties

Distribution Shifts Various Sources of Noise

Train Val (OOD) | Test (OOD)

d = Hospital 1 d = Hospit d = Hospital 4
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Sabour, S. et al. (2021) SpotlessSplats: Ignoring Distractors

in 3D Gaussian Splatting. In /CML.

Koh, P W. et al. (2021) WILDS: A Benchmark of in-the-Wild
Distribution Shifts. In JCML.
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A World of Uncertainties

Out-of-domain data (Tesla)
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A World of Uncertainties
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Hallucinations (OpenAl Whisper)
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A World of Uncertainties

arS TECHNICA Al BIZ&IT CARS CULTURE GAMING HEALTH POLICY SCIENCE SECURITY SPACE

Hospitals adopt error-

prone Al transcription
tools despite warnings

OpenAl’s Whisper tool may add fake text to medical transcripts,
investigation finds.

https://arstechnica.com/ai/2024 /10 /hospitals-adopt-error-prone-ai-transcription-tools-despite-warnings /

TECH




Expectations for ML Systems

Systems and models should be

For this, we require that they are:
in their predictions
to input perturbations (noise, adversarial attacks)
(recognise out-of-domain data)
if they are uncertain (e.g., active learning, reasoning)



However, ...

* Accurate in their predictions
* Sensitive to pertubations!!! "

* Don’t know when they don’t know!?

Considered “unreliable”

1: Szegedy, C. et al. (2014). Intriguing properties of neural networks. In /CLR.
2: Nalisnick, E. et al. (2019). Do deep generative models know what they don't know? In /CLR.
3: Guo, C. et al. (2017). On calibration of modern neural networks. In /CML.

% L.
* Overconfident in their predictions!s! CONFIDENTLY. PREDICTING!
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WELL, WHAT DO
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Bayes for Machine Learning



Bayesian
Functional Priors

Extrapolate Conservative

Meronen, L. et al. (2021). Periodic activation
functions induce stationarity. In NeurlPS.

Deep Learning
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Bayesian Deep Learning

Functional Priors Uncertainty Quant. &
Overconfidence
Extrapolate Conservative Overconfident Model Average
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Meronen, L. et al. (2021). Periodic activation Kristiadi, A. et al. (2020). Being Bayesian,
functions induce stationarity. In NeurlPS. Even Just a Bit, Fixes Overconfidence in
ReLU Networks. In /CML.
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Bayesian Deep Learning

Functional Priors Uncertainty Quant. & Active Learning

Overconfidence

After Active Learning

Error (entropy < 1)
(counts in log-scale)

Extrapolate Conservative Overconfident Model Average
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Uncertainty (Entropy) Uncertainty (Entropy)
Meronen, L. et al. (2021). Periodic activation Kristiadi, A. et al. (2020). Being Bayesian, Baumann, A. et al. (2025). Post-hoc
functions induce stationarity. In NeurlPS. Even Just a Bit, Fixes Overconfidence in Probabilistic Vision-Language Models.
ReLLU Networks. In /CML. ArXiv.



Bayesian Deep Learning

Functional Priors Uncertainty Quant. & Active Learning

Overconfidence

After Active Learning

Error (entropy < 1)
(counts in log-scale)

Extrapolate Conservative Overconfident Model Average
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Uncertainty (Entropy) Uncertainty (Entropy)
Meronen, L. et al. (2021). Periodic activation Kristiadi, A. et al. (2020). Being Bayesian, Baumann, A. et al. (2025). Post-hoc
functions induce stationarity. In NeurlPS. Even Just a Bit, Fixes Overconfidence in Probabilistic Vision-Language Models.
ReLLU Networks. In /CML. ArXiv.
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In Domain

B~

MAP Model \

Bayesian Deep Learning

Out of Domain

- Hil
1.2

Entropy —

Density

0 1 2
Entropy
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Neural network

= LA MAP LA GLM LA Ours
0
0

1 2 0 1
Entropy Entropy

|

Bayesian neural network
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Density
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Bayesian Deep Learning

In Domain Out of Domain
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Bayesian neural network
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Uncertainty Quantification in ML

Uncertainty Quantification Approaches

Point-Estimate Bayesian Data Auxiliary Interval
Based Methods Augmentation Networks Predictions
* Evidential NNs * Laplace Approx. * Test Time Aug. * Evidential NNs * Interval Networks
* Prior Networks * Variational Inference * Mix Strategies * Uncertainty Adapter * Conformal Predictions
* Deterministic UQ * Deep Ensemble * Consistency Learning * Probabilistic DNN

* MC Dropout



Uncertainty Quantification in ML

Uncertainty Quantification Approaches

y

Point-Estimate Bayesian Data Auxiliary Interval
Based Methods Augmentation Networks Predictions
* Evidential NNs * Laplace Approx. *Test Time Aug. * Evidential NNs * Interval Networks
* Prior Networks * Variational Inference * Mix Strategies * Uncertainty Adapter * Conformal Predictions
* Deterministic UQ * Deep Ensemble * Consistency Learning * Probabilistic DNN

* MC Dropout



Uncertainty Quantification in ML

/TorchUncertainty 4 Lo
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) LR e ®
https://torch-uncertainty.github.io/ https://aleximmer.com /Laplace/ https://github.com/AaltoML/SUQ
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Bayesian Deep Learning

(Deterministic) Neural Network Bayesian Neural Network

Blundell, C. et al. (2015). Weight Uncertainty in Neural Networks, In /CML.



Bayesian Deep Learning

(Deterministic) Neural Network Bayesian Neural Network
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Interactive Gaussian Process Visualization by Ti John (http://www.infinitecuriosity.org/vizgp/)




Bayesian Deep Learning

Computations in Bayesian Learning are notoriously hard!

Challenges in Bayesian Deep Learning:

* Hard to specify functional priors.

* Intractable high-dimensional multi-modal posterior.
(billions of parameters)

 Models can be difficult to train from scratch.
(high compute resource demand)
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Bayesian Deep Learning

Computations in Bayesian Learning are notoriously hard!

Challenges in Bayesian Deep Learning:

* Hard to specify functional priors.

* Intractable high-dimensional multi-modal posterior.
(billions of parameters)

e Models can be ditficult to train from scratch.
(high compute resource demand)



Inference Methods in BDL

Variational Ensembles
Inference Laplace
‘ /.\ Approximation
MC Dropout Local Ensembles \

(e.g., SWAG)

Function-space
methods
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Inference Methods in BDL

Ensembles

Variational
Inference

Laplace
Approximation

MC Dropout Local Ensembles
(e.g., SWAG)

.

Function-space
methods
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Variational Inference: Big Picture

Recipe for approximating an intractable distribution

1. Define a family of distributions O

pePpP

38



Variational Inference: Big Picture

Recipe for approximating an intractable distribution P & P

1. Define a family of distributions O

2. Detfine a way to compute a “distance” between distributions

D (pllg1) > D (pllg2)

— |Intractable posterior p
— 1
= Q2

0.3

0.2

0.1

0.0



Variational Inference: Big Picture

Recipe for approximating an intractable distribution P & P

1. Define a family of distributions O

2. Detfine a way to compute a “distance” between distributions
D (pllg1) > D (pllg2)

3. Search for best approximation

— |Intractable posterior p
— 1
= Q2

¢* = argmin D (p||q)
qeQ




Reminder on KL divergence

Let P and @) be two probability distributions with p.d.t. denoted
as p and g, respectively.

Then their 1S given as:

Dic (PIIQ) = [ pla) o (@) dx

: q()



Reminder on KL divergence

Let P and @) be two probability distributions with p.d.t. denoted
as p and g, respectively.

Then their 1S given as:

Dic (PIIQ) = [ pla) o (@) dx

: q()

Dk, (P||Q) >0 and Dkp, (PlQ) =0 < P=0Q



Reminder on ELBO

Reverse KL

Dk, (q(0)|[p(0 | 1:1))

q(0)

= Ky~ log(
7 q[ p(0

’ wl:n)

)



Reminder on ELBO

Dict, (a(O)1p(0 | Z1:0)) = Eong [_log (pwqr(i)m))]

q(0)

p($1:n|9) p(e)

p(mlzn)

)




Reminder on ELBO

Dict, (a(O)1p(0 | Z1:0)) = Eong [log (pwqr(i)m))]

} q(6)
— E@NC] 1Og (p(mlzne) p(0) )
i p(wlzn) -

e o (10 o (220




Reminder on ELBO

q(0)
= Bo~q |log (mwme)p(e) )

p(T1:n)

) +ee (1)

— Eequ [lng(wl;n ‘ 9)] + logp(wLn)



Reminder on ELBO

Dicr, (qO)Ip(0 | #1:0)) = Egng ll‘)g <p<9q\(i>1:n>)]

= Dy, (¢(0)||p(0)) — Egng log p(21:0 | 0)] + log p(1.,,)



Reminder on ELBO

Dyt (a(0) (0 | @1.0)) = oy 08 (12—
= Dy, (q(0)|1p(0)) — Egmg log p(z1: | 0)] + log pla.,)

logp(x1.) = =Dk, (¢(0)[[P(0)) + Eong [log p(1:0 | 0)] 4 Dy (a(O)[Ip(0 [ 1))




Reminder on ELBO

Dicr, (qO)Ip(0 | #1:0)) = Egng ll‘)g <p<9q\(i>1:n>)]

= Dy, (¢(0)||p(0)) — Egng log p(21:0 | 0)] + log p(1.,,)

logp(x1.,) = =D, (9(0)[|p(0)) + Eong [logp(1:n | 0)] + Dicy, ((0)1[p(0 | 1.,,))
>0
> = ELBO (Evidence Lower Bound)




Variational Inference



Variational Inference




Variational Inference

Closest in KL

p(0 | x)

-~ =




07
w— Normalizing flows
—— Exact solution
°
z
o
2
=
2o
£
=
°

\ o 1
Model parameter

Initial

(d)

w— Normalizing flows
—— Exact solution

Probability

a ° 1
Model parameter

Iteration 15000

Probability

Probability

Variational Inference

w— Normalizing flows
—— Exact solution

1 3 1
Model parameter

Iteration 1000

w—— Normalizing flows
—— Exact solution

Y 13 1
Model parameter

Iteration 5000

Rezende, D. et al. (2015). Variational Inference
with Normalizing Flows. In ICML.

4-bit 6-bit 4-bit 8-bit
8-bit 16-bit 4-bit 8-bit
| 1D Gaussian Mixture | | 2D Distributions |

Sladek, A. et al. (2025). Approximate Bayesian Inference via Bitstring
Representations. In UAL



Variational Inference

https:/ /lacerbi.github.io/blog /2024 /vi-is-inference-is-optimization/



Variational Inference: Takeaways

* VI turns inference into an optimisation problem.
* Can scale to large data sets, but is challenging to optimise
e Can exhibit high variance in stochastic gradients

* Tendency to underestimate the variance if reverse KL is used

* Recent work has shown that VI can be effective for large-scale
models.

Shen, Y. et al (2024). Variational Learning is Effective for Large Deep Networks. In /CML.



Laplace Approximation

What if training a model “from scratch” is too expensive?




Laplace Approximation

What if training a model “from scratch” is too expensive?
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Laplace Approximation

Negated Loss

Ve

logp(6 [x) = logp(t)  + logple [ 0) =

-~
L2 regularization  Cross-Entropy

Unknown



Laplace Approximation

Negated Loss

logp(0 | )= logp®) +logplx|0) — C
H/_/ W -~ Y, )
L2 regularization  Cross-Entropy Unknown
b S 1 *k
log p(0) +logpla | 0) 2 L(0%) + Ty, (0 = 07) = S Hy),_,. (0 — 6 )2

0()



Laplace Approximation

Negated Loss

logp(f | ) = logp(t) +logplz|0) — C
N — S ~ J ) S
L2 regularization  Cross-Entropy Unknown
1
oz p(6) +logpl | 0) ~ 66+ Tpjy_e (60— 67) — 5 Hy,_,. (6 67)?
(o)
| s
= £(07) = 5 Hy,_,. (0 - 07)

o log N (0, H, )

£o=p=



Laplace Approximation

(a) MAP Estimation

Laplace
approx. \

N(6map,0?)

p(0]X)

True posterior

OnAP

Daxberger, E. et al. (2021) Laplace Redux - Effortless Bayesian Deep Learning. In NeurlPS.
Roy, S. et al. (2022). Uncertainty-guided Source-free Domain Adaptation. In FCCV.



Linearised Laplace: Problem Setting

distribution contours Laplace predictive
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Antoran, J. (2024). Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks. PhD thesis.



Linearised Laplace: Problem Setting

distribution contours Laplace predictive lin. Laplace predictive

63
Antoran, J. (2024). Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks. PhD thesis.



Linearised Laplace

The linearised Laplace approximates the predictive distribution:

f(z;0) ~ f(z;0map) + VF(230) |g, .. (0 — Omap) =

64



Linearised Laplace

The linearised Laplace approximates the predictive distribution:

f(z;0) ~ f(z;0map) + VF(230) |g, .. (0 — Omap) =

p(y* | ¥, @, y) ~ / N | [ (0:0),0) N0 | Opiap, £)d6



Laplace Approximation: Takeaways

* Does not require retraining (post-hoc).
* Requires linearisation in the case of deep learning models.
* Crude and only local approximation.

* Fstimation of the Hessian can be difficult.

* Crude but useful (easy to use) “tool” for Bayesian inference in
deep learning.
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Machine Learning for Bayes



Amortized Inference

* NNs are powerful function approximators and generators
(e.g., diffusion models)

* How can we use NNs for approximate Bayesian inference?

* 2 Emerging research on amortized inference with NNs
(condition and predict)

:"& i

(a) Prior v samples (b) PriorGuide v samples (c) PriorGuide v retrained

Chang, P. et al. (2025). Inference-Time Prior Adaptation in Simulation-Based Inference via Guided Diffusion Models. ICLR workshop.
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Recap

* Deep learning methods can be problematic in high-risk domains.

* The Bayesian approach to deep learning can help reduce
overconfidence, quantity uncertainties, and utilise uncertainties in
decision-making.

* Prior specification is challenging and an open question.
* Performing computations is challenging, but promising avenues exist.

* Machine learning can help scaling Bayesian inference, e.g., through
amortisation.

Thanks for your attention!
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